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Overview of Standard Performance Index Score Concept and Use 

In addition to total test raw scores and scale scores, teachers and educational decision-makers frequently 
seek information to inform instructional strategies. This information can be derived from scores on 
subsets of test items that estimate how much a student knows in a clearly defined skill domain. These 
skill domains are called content standards (or standards or objectives). Scores on subsets of test items at 
the content standard level are called standard performance index (SPI) scores. The purpose of reporting 
SPI scores on the Wisconsin Forward Exam is to show the relationship between the overall achievement 
being measured (represented by the test score) and the skills within each of the content standards 
associated with the content area. Teachers may use the SPI scores for individual students as indicators 
of strengths and needs, but the SPI scores are best corroborated by other evidence, such as homework, 
class participation, diagnostic test scores, or observation. District and school administrators may compare 
their results by content standard and grade level with the state mean percentage to better understand 
their strengths and needs within a particular content area and grade level. 

SPI scores range from 1 to 99 and can be interpreted as an estimate of the number of items a student 
would be expected to answer correctly if there had been 100 similar items for a given reporting category. 
For example, an SPI of 77 for a given reporting category means that if the student was given 100 similar 
items, the student would be expected to answer 77 of them correctly. These are criterion referenced 
scores, in that they estimate how much a student knows in a clearly defined skill domain (i.e., the 
criterion). The SPI scores are computed for content standards measured by at least 4 items. The SPI 
scores are not computed for content standards measured by fewer than 4 items.  

Based on their SPI scores, students are classified in one of the four content category performance levels: 
below basic, basic, proficient, and advanced. The SPI cut scores separating these performance levels are 
derived as expected percentages of possible score points for a given standard (content category) for 
students whose total test score is at the corresponding total test cut score (basic, proficient, or advanced). 

Because a student’s overall achievement is factored in computation of the SPI scores, these scores 
provide more reliable estimates of student achievement on each content standard than simple percent 
correct. However, the SPI information should only be used for low-stakes purposes because the SPI 
cannot be considered stable for any content standard with a small number of items. The average difficulty 
of items may vary across content standards and grades. Content standards vary in their complexity, level 
of abstraction, and cognitive demand. Some standards may be intrinsically more difficult than others, and 
the difficulty of individual items is determined, in part, by the difficulty of the content domain being 
measured. The current test blueprints do not specify the average difficulty level of items for each content 
standard within grades or across grades. If the difficulty of the items varies across years, grades, and 
content standards, the mean SPI scores will be affected by differences in item difficulty as well as 
differences in student ability. Thus, differences in SPI scores across years, grades, or content standards 
should not be seen as reliable indicators of differences in student ability since these differences may be 
explained in whole or in part by differences in the difficulty of the items themselves. However, 
comparisons across years, grades, or content standards are appropriate for assessing the relative 
difficulty of the items, and comparisons of individual student scores or of group mean scores on a single 
SPI can provide useful information about the relative strengths and needs of individual students or groups 
on these standards.  

Technical Details of SPI Score Computation 

Technical details of the SPI estimation procedure described in this section are based on description of the 
SPI computation methodology included in the TerraNova 2nd Edition Technical Report (CTB/McGraw-Hill, 
2000). 
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The Standard Performance Index (SPI) is an estimate of the true score (estimated proportion of total, or 
maximum, points possible) for a content standard based on the performance of a given student. Because 
most standards are measured by a relatively small number of items, a Bayesian procedure that takes into 
account the overall test performance is used to improve the reliability of the standard scores. Given a 
student’s scale score on the test, item response theory (IRT) is used, via the 3-paremeter logistic (3PL) 
model for MC items and the 2-paremeter-partial credit (2PPC) model for CR items, to compute the 
estimated proportion of the maximum points obtained for that standard.  

The estimated proportion of the maximum points obtained for the standard provides the initial 
(Bayesian prior) estimate of the student’s mastery score. If this initial estimate is consistent with the 
student’s observed proportion, as indicated by a chi-square test, the two scores are combined as a 
weighted average to obtain the SPI score (the estimated true score). The appropriate weight for the 
Bayesian prior estimate is computed as a function of the standard error (SE) of the scale score on 
which it is based: the smaller the SE, the larger the weight. If the prior estimate and the observed 
proportion differ significantly, the observed proportion of the maximum score is used without the prior 
estimate to compute the student’s score on that objective.  
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Standard Performance Index Computation  

The standard performance index (SPI) is an estimated true score (estimated proportion of total or 
maximum points obtained) based on the performance of a given examinee for the items in a given 
learning strand. Assume a k-item test is composed of j strands with a maximum possible raw score of n. 
Also assume that each item contributes to, at most, one strand, and the kj items in strand j contribute a 
maximum of nj points. Define Xj as the observed raw score on strand j. The true score is 
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It is assumed that there is information available about the examinee in addition to the strand score, and 
this information provides a prior distribution for Tj . This prior distribution of Tj  for a given examinee is 
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for 0 1; , 0j j jT r s≤ ≤ > . Estimates of rj  and sj  are derived from IRT (Lord, 1980). 

 

It is assumed that X j  follows a binomial distribution, given Tj : 
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where 

Ti  is the expected value of the score for item i in strand j for a given θ . 

 

Given these assumptions, the posterior distribution of Tj , given xj , is 

 ( ) ( , )j j j j jg T X x p qβ= = ,       (2) 
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The SPI is defined to be the mean of this posterior distribution: 
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Following Novick and Jackson (1974, p. 119), a mastery band is created to be the C% central credibility 

interval for Tj. It is obtained by identifying the values that place 
1 (100 )%
2

C−  of the ( , )j jp qβ  density 

in each tail of the distribution. 

 

Estimation of the Prior Distribution of jT  

The k items in each test are scaled together using a generalized IRT model (3PL/2PPC) that fits a three-
parameter logistic model (3PL) to the MC items and a generalized partial-credit model (2PPC) to the CR 
items (Yen, 1993). 

 

The 3PL model is 
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where  

Ai  is the discrimination, Bi  is the location, and ci  is the guessing parameter for     item i. 

 

A generalization of Master’s (1982) partial credit (2PPC) model was used for the CR items. The 2PPC 
model, the same as Muraki’s (1992) “generalized partial credit model,” has been shown to fit response 
data obtained from a wide variety of mixed-item type achievement tests (Fitzpatrick, Link, Yen, Burket, Ito, 
& Sykes, 1996). For a CR item with 1i  score levels, integer scores were assigned that ranged from 0 to
1 1i − :    
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and  
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Alpha (αi ) is the item discrimination, and gamma (γ ih ) is related to the difficulty of the item levels; the trace 

lines for adjacent score levels intersect at ih iγ α . 

Item parameters estimated from the national standardization sample are used to obtain SPI values. 
( )Tij θ  is the expected score for item i in strand j, and θ  is the common trait value to which the items are 

scaled: 



 

5 
 

 ( ) ( ) ( )T m Pij ijm
m

i

θ θ= −
=
∑ 1

1

1

, 

where  

1i  is the number of score levels in item i, including 0.   

 

Tj , the expected proportion of maximum score for strand j, is 
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The expected score for item i and estimated proportion-correct of maximum score for strand j are 
obtained by substituting the estimate of the trait ˆ( )θ  for the actual trait value.   

The theoretical random variation in item response vectors and resulting ˆ( )θ  values for a given examinee 

produces the distribution ˆˆ( )jg T θ  with mean µ θ(  | )Tj  and variance σ θ2 (  )Tj . This distribution is used 

to estimate a prior distribution of Tj . Given that Tj  is assumed to be distributed as a beta distribution 

(equation 1), the mean [ (  )]µ θTj  and variance [ (  )]σ θ2 Tj  of this distribution can be expressed in 

terms of its parameters, rj        and sj .   

 

Expressing the mean and variance of the prior distribution in terms of the parameters of the beta 
distribution (Novick & Jackson, 1974, p. 113) produces  
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Solving these equations for rj  and sj  produces 
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and 
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Using IRT, σ θ2 (  )Tj  can be expressed in terms of item parameters (Lord, 1983): 
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Because Tj  is a monotonic transformation of θ  (Lord, 1980, p.71), 
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where  

I ( ,  )T Tj j is the information that Tj  contributes about Tj .  

 

Given these results, Lord (1980, p. 79 and 85) produces 
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and the parameters of the prior beta distribution for Tj  can be expressed in terms of the parameters of 

the 3PL IRT and 2PPC models. Furthermore, the parameters of the posterior distribution of Tj  also can 
be expressed in terms of the IRT parameters: 

 *ˆ
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and 
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The SPI is 
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The SPI can also be written in terms of the relative contribution of the prior estimate Tj  and the observed 

proportion of maximum raw (correct score) (OPM), x nj j/ , as 

[ ]~  ( ) /T w T w x nj j j j j j= + −1 .       (22) 

wj , a function of the mean and variance of the prior distribution, is the relative weight given to the prior 
estimate: 
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The term nj
*  may be interpreted as the contribution of the prior in terms of theoretical numbers of items. 

 

Check on Consistency and Adjustment of Weight Given to Prior Estimate 

The item responses are assumed to be described by ˆ( )iP θ  or ˆ( )imP θ , depending on the type of item. 
Even if the IRT model accurately described item performance over examinees, their item responses 
grouped by strand may be multidimensional. For example, a particular examinee may be able to perform 
difficult addition but not easy subtraction. Under these circumstances, it is not appropriate to pool the prior 
estimate, Tj , with x nj j/ . In calculating the SPI, the following statistic was used to identify examinees 
with unexpected performance on the strands in a test: 
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If 2 ( , .10)Q Jχ≤ , the weight, wj , is computed and the SPI is produced. If 2 ( , .10)Q Jχ> , nj
*  and 

subsequently wj  is set equal to 0 and the OPM is used as the estimate of strand performance.   

 

As previously noted, the prior is estimated using an ability estimate based on responses to all the items 
(including the items of strand j) and hence is not independent of X j . An adjustment for the overlapping 
information that requires minimal computation is to multiply the test information in equation 5 by the factor
( ) /n n nj− . The application of this factor produces an “adjusted” SPI estimate that can be compared to 
the “unadjusted” estimate. 
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Possible Violations of the Assumptions 

Even if the IRT model fits the test items, the responses for a given examinee, grouped by strand, may be 
multidimensional. In these cases, it would not be appropriate to pool the prior estimate, Tj , with x nj j/ . 
A chi-square fit statistic is used to evaluate the observed proportion of maximum raw score (OPM) relative 
to that predicted for the items in the strand on the basis of the student’s overall trait estimate. If the chi-
square is significant, the prior estimate is not used and the OPM obtained becomes the student’s strand 
score. 

 

If the items in the strand do not permit guessing, it is reasonable to assume Tj , the expected proportion 
correct of the maximum score for a strand, will be greater or equal to zero. If correct guessing is possible, 
as it is with MC items, there will be a non-zero lower limit to Tj , and a three-parameter beta distribution, 

in which Tj  is greater than or equal to this lower limit (Johnson & Kotz, 1979, p. 37), would be more 

appropriate. The use of the two-parameter beta distribution would tend to underestimate Tj  among very 
low-performing examinees. While working with tests containing exclusively MC items, Yen found that 
there does not appear to be a practical importance to this underestimation (Yen, 1997). The impact of any 
such effect would be reduced as the proportion of CR items in the test increases. The size of this effect, 
nonetheless, was evaluated using simulations (Yen, Sykes, Ito, & Julian, 1997).   

 

The SPI procedure assumes that p X Tj j( )  is a binomial distribution. This assumption is appropriate only 
when all the items in a strand have the same Bernoulli item response function. Not only do real items 
differ in difficulty, but when there are mixed-item types, X j is not the sum of nj  independent Bernoulli 
variables. It is instead the total raw score. In essence, the simplifying assumption has been made that 
each CR item with a maximum score of 1 1j −  is the sum of 1 1j −  independent Bernoulli variables. Thus, 
a complex compound distribution is theoretically more applicable than the binomial. Given the complexity 
of working with such a model, it appears valuable to determine if the simpler model described here is 
sufficiently accurate to be useful.    

 

Finally, because the prior estimate of ˆ,j jT T , is based on performance on the entire test, including strand j, 

the prior estimate is not independent of X j . The smaller the ratio n nj / , the less impact this dependence will 
have. The effect of the overlapping information would be to understate the width of the credibility interval. The 
extent to which the size of the credibility interval is too small was examined (Yen et al, 1997) by simulating 
strands that contained varying proportions of the total test points. 
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